3.11.39 \(\int \frac {1}{\sqrt [4]{2-3 x^2} (4-3 x^2)} \, dx\) [1039]

Optimal. Leaf size=120 \[ \frac {\tan ^{-1}\left (\frac {2-\sqrt {2} \sqrt {2-3 x^2}}{\sqrt [4]{2} \sqrt {3} x \sqrt [4]{2-3 x^2}}\right )}{2\ 2^{3/4} \sqrt {3}}+\frac {\tanh ^{-1}\left (\frac {2+\sqrt {2} \sqrt {2-3 x^2}}{\sqrt [4]{2} \sqrt {3} x \sqrt [4]{2-3 x^2}}\right )}{2\ 2^{3/4} \sqrt {3}} \]

[Out]

1/12*arctan(1/6*(2-2^(1/2)*(-3*x^2+2)^(1/2))*2^(3/4)/x/(-3*x^2+2)^(1/4)*3^(1/2))*2^(1/4)*3^(1/2)+1/12*arctanh(
1/6*(2+2^(1/2)*(-3*x^2+2)^(1/2))*2^(3/4)/x/(-3*x^2+2)^(1/4)*3^(1/2))*2^(1/4)*3^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 120, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.048, Rules used = {406} \begin {gather*} \frac {\text {ArcTan}\left (\frac {2-\sqrt {2} \sqrt {2-3 x^2}}{\sqrt [4]{2} \sqrt {3} x \sqrt [4]{2-3 x^2}}\right )}{2\ 2^{3/4} \sqrt {3}}+\frac {\tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {2-3 x^2}+2}{\sqrt [4]{2} \sqrt {3} x \sqrt [4]{2-3 x^2}}\right )}{2\ 2^{3/4} \sqrt {3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/((2 - 3*x^2)^(1/4)*(4 - 3*x^2)),x]

[Out]

ArcTan[(2 - Sqrt[2]*Sqrt[2 - 3*x^2])/(2^(1/4)*Sqrt[3]*x*(2 - 3*x^2)^(1/4))]/(2*2^(3/4)*Sqrt[3]) + ArcTanh[(2 +
 Sqrt[2]*Sqrt[2 - 3*x^2])/(2^(1/4)*Sqrt[3]*x*(2 - 3*x^2)^(1/4))]/(2*2^(3/4)*Sqrt[3])

Rule 406

Int[1/(((a_) + (b_.)*(x_)^2)^(1/4)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> With[{q = Rt[b^2/a, 4]}, Simp[(-b/(2*a
*d*q))*ArcTan[(b + q^2*Sqrt[a + b*x^2])/(q^3*x*(a + b*x^2)^(1/4))], x] - Simp[(b/(2*a*d*q))*ArcTanh[(b - q^2*S
qrt[a + b*x^2])/(q^3*x*(a + b*x^2)^(1/4))], x]] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c - 2*a*d, 0] && PosQ[b^2/a
]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt [4]{2-3 x^2} \left (4-3 x^2\right )} \, dx &=\frac {\tan ^{-1}\left (\frac {2-\sqrt {2} \sqrt {2-3 x^2}}{\sqrt [4]{2} \sqrt {3} x \sqrt [4]{2-3 x^2}}\right )}{2\ 2^{3/4} \sqrt {3}}+\frac {\tanh ^{-1}\left (\frac {2+\sqrt {2} \sqrt {2-3 x^2}}{\sqrt [4]{2} \sqrt {3} x \sqrt [4]{2-3 x^2}}\right )}{2\ 2^{3/4} \sqrt {3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.03, size = 119, normalized size = 0.99 \begin {gather*} \frac {\tan ^{-1}\left (\frac {3 \sqrt {2} x^2-4 \sqrt {2-3 x^2}}{2\ 2^{3/4} \sqrt {3} x \sqrt [4]{2-3 x^2}}\right )+\tanh ^{-1}\left (\frac {2\ 2^{3/4} \sqrt {3} x \sqrt [4]{2-3 x^2}}{3 \sqrt {2} x^2+4 \sqrt {2-3 x^2}}\right )}{4\ 2^{3/4} \sqrt {3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/((2 - 3*x^2)^(1/4)*(4 - 3*x^2)),x]

[Out]

(ArcTan[(3*Sqrt[2]*x^2 - 4*Sqrt[2 - 3*x^2])/(2*2^(3/4)*Sqrt[3]*x*(2 - 3*x^2)^(1/4))] + ArcTanh[(2*2^(3/4)*Sqrt
[3]*x*(2 - 3*x^2)^(1/4))/(3*Sqrt[2]*x^2 + 4*Sqrt[2 - 3*x^2])])/(4*2^(3/4)*Sqrt[3])

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 3.
time = 1.48, size = 188, normalized size = 1.57

method result size
trager \(-\frac {\RootOf \left (\textit {\_Z}^{4}+72\right ) \ln \left (-\frac {6 \left (-3 x^{2}+2\right )^{\frac {3}{4}} \RootOf \left (\textit {\_Z}^{4}+72\right )-\left (-3 x^{2}+2\right )^{\frac {1}{4}} \RootOf \left (\textit {\_Z}^{4}+72\right )^{3}-18 \sqrt {-3 x^{2}+2}\, x +3 \RootOf \left (\textit {\_Z}^{4}+72\right )^{2} x}{3 x^{2}-4}\right )}{24}-\frac {\RootOf \left (\textit {\_Z}^{2}+\RootOf \left (\textit {\_Z}^{4}+72\right )^{2}\right ) \ln \left (-\frac {6 \left (-3 x^{2}+2\right )^{\frac {3}{4}} \RootOf \left (\textit {\_Z}^{2}+\RootOf \left (\textit {\_Z}^{4}+72\right )^{2}\right )+\left (-3 x^{2}+2\right )^{\frac {1}{4}} \RootOf \left (\textit {\_Z}^{4}+72\right )^{2} \RootOf \left (\textit {\_Z}^{2}+\RootOf \left (\textit {\_Z}^{4}+72\right )^{2}\right )-18 \sqrt {-3 x^{2}+2}\, x -3 \RootOf \left (\textit {\_Z}^{4}+72\right )^{2} x}{3 x^{2}-4}\right )}{24}\) \(188\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(-3*x^2+2)^(1/4)/(-3*x^2+4),x,method=_RETURNVERBOSE)

[Out]

-1/24*RootOf(_Z^4+72)*ln(-(6*(-3*x^2+2)^(3/4)*RootOf(_Z^4+72)-(-3*x^2+2)^(1/4)*RootOf(_Z^4+72)^3-18*(-3*x^2+2)
^(1/2)*x+3*RootOf(_Z^4+72)^2*x)/(3*x^2-4))-1/24*RootOf(_Z^2+RootOf(_Z^4+72)^2)*ln(-(6*(-3*x^2+2)^(3/4)*RootOf(
_Z^2+RootOf(_Z^4+72)^2)+(-3*x^2+2)^(1/4)*RootOf(_Z^4+72)^2*RootOf(_Z^2+RootOf(_Z^4+72)^2)-18*(-3*x^2+2)^(1/2)*
x-3*RootOf(_Z^4+72)^2*x)/(3*x^2-4))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-3*x^2+2)^(1/4)/(-3*x^2+4),x, algorithm="maxima")

[Out]

-integrate(1/((3*x^2 - 4)*(-3*x^2 + 2)^(1/4)), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 553 vs. \(2 (89) = 178\).
time = 2.66, size = 553, normalized size = 4.61 \begin {gather*} \frac {1}{72} \cdot 18^{\frac {3}{4}} \sqrt {2} \arctan \left (-\frac {6 \cdot 18^{\frac {3}{4}} \sqrt {2} {\left (-3 \, x^{2} + 2\right )}^{\frac {1}{4}} x^{3} + 54 \, x^{4} + 24 \cdot 18^{\frac {1}{4}} \sqrt {2} {\left (-3 \, x^{2} + 2\right )}^{\frac {3}{4}} x + 12 \, \sqrt {2} {\left (3 \, x^{2} - 4\right )} \sqrt {-3 \, x^{2} + 2} - 72 \, x^{2} + {\left (18^{\frac {3}{4}} \sqrt {2} {\left (3 \, x^{3} + 4 \, x\right )} \sqrt {-3 \, x^{2} + 2} - 72 \, {\left (-3 \, x^{2} + 2\right )}^{\frac {1}{4}} x^{2} - 6 \cdot 18^{\frac {1}{4}} \sqrt {2} {\left (3 \, x^{3} - 4 \, x\right )} - 48 \, \sqrt {2} {\left (-3 \, x^{2} + 2\right )}^{\frac {3}{4}}\right )} \sqrt {-\frac {3 \, \sqrt {2} x^{2} + 2 \cdot 18^{\frac {1}{4}} \sqrt {2} {\left (-3 \, x^{2} + 2\right )}^{\frac {1}{4}} x + 4 \, \sqrt {-3 \, x^{2} + 2}}{3 \, x^{2} - 4}}}{6 \, {\left (9 \, x^{4} + 24 \, x^{2} - 16\right )}}\right ) - \frac {1}{72} \cdot 18^{\frac {3}{4}} \sqrt {2} \arctan \left (\frac {6 \cdot 18^{\frac {3}{4}} \sqrt {2} {\left (-3 \, x^{2} + 2\right )}^{\frac {1}{4}} x^{3} - 54 \, x^{4} + 24 \cdot 18^{\frac {1}{4}} \sqrt {2} {\left (-3 \, x^{2} + 2\right )}^{\frac {3}{4}} x - 12 \, \sqrt {2} {\left (3 \, x^{2} - 4\right )} \sqrt {-3 \, x^{2} + 2} + 72 \, x^{2} + {\left (18^{\frac {3}{4}} \sqrt {2} {\left (3 \, x^{3} + 4 \, x\right )} \sqrt {-3 \, x^{2} + 2} + 72 \, {\left (-3 \, x^{2} + 2\right )}^{\frac {1}{4}} x^{2} - 6 \cdot 18^{\frac {1}{4}} \sqrt {2} {\left (3 \, x^{3} - 4 \, x\right )} + 48 \, \sqrt {2} {\left (-3 \, x^{2} + 2\right )}^{\frac {3}{4}}\right )} \sqrt {-\frac {3 \, \sqrt {2} x^{2} - 2 \cdot 18^{\frac {1}{4}} \sqrt {2} {\left (-3 \, x^{2} + 2\right )}^{\frac {1}{4}} x + 4 \, \sqrt {-3 \, x^{2} + 2}}{3 \, x^{2} - 4}}}{6 \, {\left (9 \, x^{4} + 24 \, x^{2} - 16\right )}}\right ) + \frac {1}{288} \cdot 18^{\frac {3}{4}} \sqrt {2} \log \left (-\frac {36 \, {\left (3 \, \sqrt {2} x^{2} + 2 \cdot 18^{\frac {1}{4}} \sqrt {2} {\left (-3 \, x^{2} + 2\right )}^{\frac {1}{4}} x + 4 \, \sqrt {-3 \, x^{2} + 2}\right )}}{3 \, x^{2} - 4}\right ) - \frac {1}{288} \cdot 18^{\frac {3}{4}} \sqrt {2} \log \left (-\frac {36 \, {\left (3 \, \sqrt {2} x^{2} - 2 \cdot 18^{\frac {1}{4}} \sqrt {2} {\left (-3 \, x^{2} + 2\right )}^{\frac {1}{4}} x + 4 \, \sqrt {-3 \, x^{2} + 2}\right )}}{3 \, x^{2} - 4}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-3*x^2+2)^(1/4)/(-3*x^2+4),x, algorithm="fricas")

[Out]

1/72*18^(3/4)*sqrt(2)*arctan(-1/6*(6*18^(3/4)*sqrt(2)*(-3*x^2 + 2)^(1/4)*x^3 + 54*x^4 + 24*18^(1/4)*sqrt(2)*(-
3*x^2 + 2)^(3/4)*x + 12*sqrt(2)*(3*x^2 - 4)*sqrt(-3*x^2 + 2) - 72*x^2 + (18^(3/4)*sqrt(2)*(3*x^3 + 4*x)*sqrt(-
3*x^2 + 2) - 72*(-3*x^2 + 2)^(1/4)*x^2 - 6*18^(1/4)*sqrt(2)*(3*x^3 - 4*x) - 48*sqrt(2)*(-3*x^2 + 2)^(3/4))*sqr
t(-(3*sqrt(2)*x^2 + 2*18^(1/4)*sqrt(2)*(-3*x^2 + 2)^(1/4)*x + 4*sqrt(-3*x^2 + 2))/(3*x^2 - 4)))/(9*x^4 + 24*x^
2 - 16)) - 1/72*18^(3/4)*sqrt(2)*arctan(1/6*(6*18^(3/4)*sqrt(2)*(-3*x^2 + 2)^(1/4)*x^3 - 54*x^4 + 24*18^(1/4)*
sqrt(2)*(-3*x^2 + 2)^(3/4)*x - 12*sqrt(2)*(3*x^2 - 4)*sqrt(-3*x^2 + 2) + 72*x^2 + (18^(3/4)*sqrt(2)*(3*x^3 + 4
*x)*sqrt(-3*x^2 + 2) + 72*(-3*x^2 + 2)^(1/4)*x^2 - 6*18^(1/4)*sqrt(2)*(3*x^3 - 4*x) + 48*sqrt(2)*(-3*x^2 + 2)^
(3/4))*sqrt(-(3*sqrt(2)*x^2 - 2*18^(1/4)*sqrt(2)*(-3*x^2 + 2)^(1/4)*x + 4*sqrt(-3*x^2 + 2))/(3*x^2 - 4)))/(9*x
^4 + 24*x^2 - 16)) + 1/288*18^(3/4)*sqrt(2)*log(-36*(3*sqrt(2)*x^2 + 2*18^(1/4)*sqrt(2)*(-3*x^2 + 2)^(1/4)*x +
 4*sqrt(-3*x^2 + 2))/(3*x^2 - 4)) - 1/288*18^(3/4)*sqrt(2)*log(-36*(3*sqrt(2)*x^2 - 2*18^(1/4)*sqrt(2)*(-3*x^2
 + 2)^(1/4)*x + 4*sqrt(-3*x^2 + 2))/(3*x^2 - 4))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \int \frac {1}{3 x^{2} \sqrt [4]{2 - 3 x^{2}} - 4 \sqrt [4]{2 - 3 x^{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-3*x**2+2)**(1/4)/(-3*x**2+4),x)

[Out]

-Integral(1/(3*x**2*(2 - 3*x**2)**(1/4) - 4*(2 - 3*x**2)**(1/4)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-3*x^2+2)^(1/4)/(-3*x^2+4),x, algorithm="giac")

[Out]

integrate(-1/((3*x^2 - 4)*(-3*x^2 + 2)^(1/4)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} -\int \frac {1}{{\left (2-3\,x^2\right )}^{1/4}\,\left (3\,x^2-4\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-1/((2 - 3*x^2)^(1/4)*(3*x^2 - 4)),x)

[Out]

-int(1/((2 - 3*x^2)^(1/4)*(3*x^2 - 4)), x)

________________________________________________________________________________________